Drug Coated Balloons: Present Status and Future of the Technology

Aloke V. Finn MD Medical Director and Chief Scientific Officer CVPath Institute Gaithersburg, MD CVPATH

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Consultant: Abbott Vascular; Boston Scientific; Celonova; Cook Medical; Cordis; CSI; Edwards Lifescience; Lutonix Bard; Medtronic; OrbusNeich Medical; ReCore; Sinomededical Technology; Spectranetics; Surmodics; Terumo Corporation; W. L. Gore; Xeltis.

Employment in industry: No

Honorarium: Abbott Vascular; Biosensors; Boston Scientific; Celonova; Cook Medical; Cordis; CSI; Lutonix Bard; Medtronic; OrbusNeich Medical; CeloNova; SINO Medical Technology; ReCore; Terumo Corporation; W. L. Gore; Spectranetics.

Institutional grant/research support: R01 HL141425 Leducq Foundation Grant; 480 Biomedical; 4C Medical; 4Tech; Abbott; Accumedical; Amgen; Biosensors; Boston Scientific; Cardiac Implants; Celonova; Claret Medical; Concept Medical; Cook; CSI; DuNing, Inc; Edwards LifeSciences; Emboline; Endotronix; Envision Scientific; Lutonix/Bard; Gateway; Lifetech; Limflo; MedAlliance; Medtronic; Mercator; Merill; Microport Medical; Microvention; Mitraalign; Mitra assist; NAMSA; Nanova; Neovasc; NIPRO; Novogate; Occulotech; OrbusNeich Medical; Phenox; Profusa; Protembis; Qool; Recor; Senseonics; Shockwave; Sinomed; Spectranetics; Surmodics; Symic; Vesper; W.L. Gore; Xeltis.

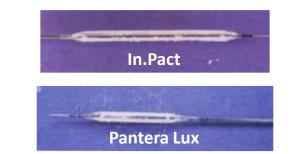
Owner of a healthcare company: No

Stockholder of a healthcare company: No

Elements of an Effective DCB Formulation

Must deliver large quantities of the drug within seconds

- Distribute within the media in the first few days
- Therapeutic drug levels must be maintained for more than 4 weeks
- Must allow rapid healing as compared to DES
- No need for long-term anti-platelet therapy
- Biologic effects must be observed by histology at 28-days
- Effective drug delivery to target tissue while avoiding non-target effect (i.e. minimize emboli)



Ptx Drug Coated Balloon Devices (Peripheral artery)

Device	Company	Coating	Drug dose (µg/mm²)	CE mark [*]
Advance 18 PTX [™]	Cook Medical, Bloomington, IN, USA	Paclitaxel	3.0	Yes
Cotavance®	Bayer Schering Pharma AG, Berlin, Germany	Paclitaxel-iopromide	3.0	Yes
Freeway™	Eurocor, Bonn, Germany	Paclitaxel–shellac	3.0	Yes
In.Pact [™] Admiral,	Medtronic Vascular, Santa Clara, CA, USA	Paclitaxel-urea	3.5	Yes
Lutonix [®] 035 DCB	BARD, Murray Hill, NJ, USA	Paclitaxel-polysorbate/sorbitol	2.0	Yes
Ranger	Boston Scientific	Paclitaxel–Acetyl Tributyl Citrate	2.0	Yes
Passeo-18 Lux [®]	Biotronik, Bülach, Switzerland	Paclitaxel-butyryl-tri-hexyl citrate	3.0	$No \rightarrow Yes$
Stellarex®	Covidien, Mansfield, MA, USA	Paclitaxel	2.0	Yes
SurVeil™DCB	SurModics, MN, USA	Paclitaxel-proprietary photolink®	2.0	$No \rightarrow No$

C V P A T H

Byrne RA, Joner M. et al. Nat Rev Cardiol. 2014;11:13-23

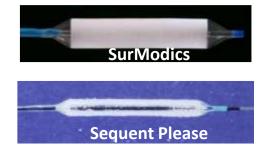


Table 2: Comparison of Pivotal Clinical Trials of Paclitaxel-coated Balloons

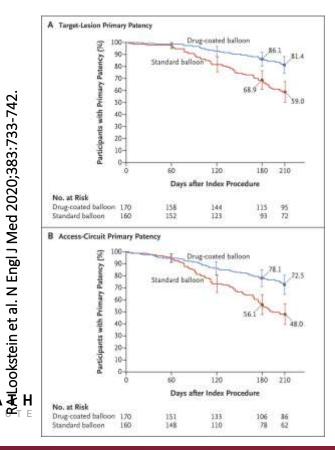
Study	Balloon	Company	Number of Patients (Lesions)	Rutherford Class 2/3/4/5 (%)	Lesion Length (mm)	De novo Lesion (%)		Severe Calcification (%)	Primary Endpoint		Follow-up Duration
IN.PACT SFA 2015/2018 ^{19,20}	IN.PACT Admiral	Medtronic	220 (221)	37.7/57.3/5.0/0	89.4 ± 48.9	95.0	25.8	8.1	Freedom from CD-TLR	Duplex ultrasonography (PSVR ≤2.4)	1 and 3 years
LEVANT 2 2015 ²¹	Lutonix	CR Bard	316 (322)	29.4/62.7/7.9/0	62.8 ± 41.8	76.6	20.6	10.4	Freedom from CD-TLR and restenosis	Duplex ultrasonography (PSVR <2.5)	1 year
illumenate 2017 ²³	Stellarex	Philips	222 (254)	15.0/83.0/4.0/0	72.0 ± 52.0	92.0	19.0	13.0	Freedom from CD-TLR	Duplex ultrasonography (PSVR ≤2.5)	1 year
RANGER SFA 2017 ⁵	Ranger	Boston Scientific	71 (71)	46.2/53.8/0/0*	68.0 ± 46.0	74.0	34.3	35.7	Late lumen loss	Angiography	6 months
CONSEQUENT 2017 ²⁶	SeQuent Please	B. Braun	78 (87)	5.1/94.9/0/0	137.0 ± 122.0	NA	23.1	NA	Late lumen loss	Angiography	6 months

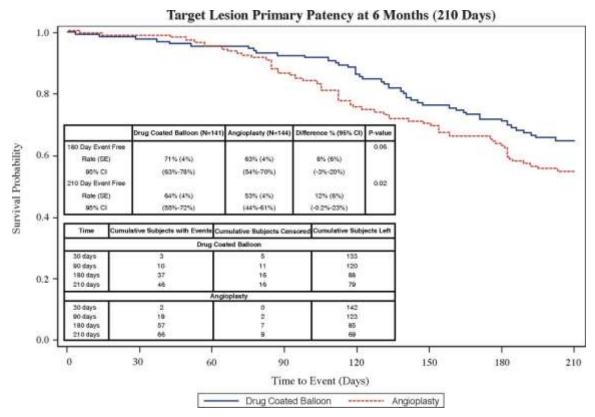
Continuous variables shown as mean ± SD. *Exact number is not available. The number was inferred from the figure.

DCB = drug coated balloon; CD-TLR = clinically driven target lesion revascularisation; NA = not available; PSVR = peak systolic velocity ratio.

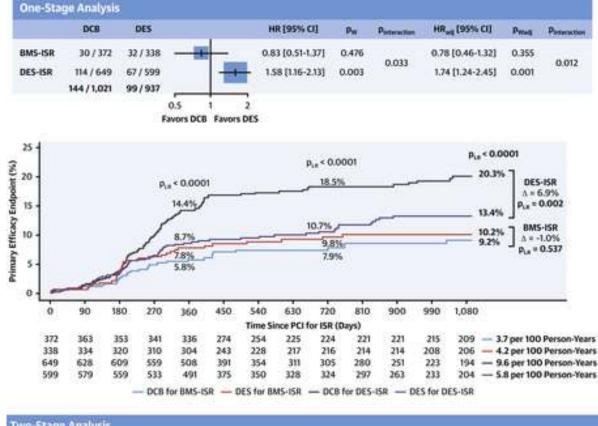
Table 3: Clinical Studies Evaluating Paclitaxel-coated Balloon Treatment for Critical Limb Ischaemia

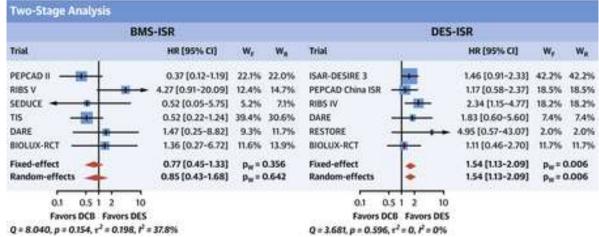
Study	Balloon	of Patients		Lesion length (mm)			Severe Calcification (%)	Follow-up Duration		ALL DOUGHT OF THE OWNER OF	Freedom From Major Amputation (%)
Phair et al. 2020 ³²	IN.PACT, Lutonix	32 (NA*)		86.0 ± 39.4 (SFA), 69.0 ± 5.5 (POP)	100′	12.5	NA	1 year	85.7	58.1	71.1
XLPAD registry 2020 ³³	IN.PACT Admiral Lutonix	,105 (NA*)	NA	150.0 ± 123.3	86.7	59.1	31.2	1 year	83.8	NA	88.6
IN.PACT Global Study 2019 ³⁴	IN.PACT Admiral	156 (194)	76.9/23.1/0	139.4 ± 105.5	74.2	41.2	11.3	1 year	86.3	NA	98.6
Spanish Luminor Registry 2020 ³⁵	Luminor	148 (180)	16.0/84.0/0	77.4 ± 50.3	91.1	53.9	56.7	1 year	92.1	87.7	84.7


Continuous variable shown as mean ± SD. *No available information regarding number of lesions. 'Based on the history of past intervention. DCB = drug-coated balloon; TLR = target lesion revascularisation; NA = not available; SFA = superficial femoral artery; POP = popliteal.


Ptx DCBs Better for Above Than Below the Knee

Drug Coated Balloon Devices for AVF stenosis


Device	Company	Coating	Drug dose (µg/mm²)	CE mark [*]
In.Pact [™] Admiral,	Medtronic Vascular, Santa Clara, CA, USA	Paclitaxel-urea	3.5	Yes
Lutonix [®] 035 DCB	BARD, Murray Hill, NJ, USA	Paclitaxel-polysorbate/sorbitol	2.0	Yes



Scott O. Trerotola et al. CJASN 2018;13:1215-1224

DCB>DES for BMS ISR But DES>DCB for DES ISR

Daniele Giacoppo et al. J Am Coll Cardiol 2020; 75:2664-2678.

Risk of Death following Application of PES and PCB in Femoropopliteal artery

Random effects forest plot of <u>all-cause death at 2 years</u>

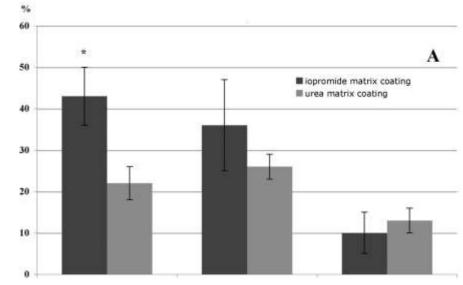
Study		litaxel Total	C Events	ontrol Total	Risk Ratio	RR	95%-C	Weight (fixed)	Weight (random)
ZILVER-PTX 19	19	297	7	177		1.62	[0.69; 3.77]	20.8%	20.6%
FINN-PTX ¹⁸	1	23	0	18		2.36	[0.10; 54.68]	1. 11-2-12-20	1.5%
IN.PACT SFA 82	16	198		106		8.57	[1.15; 63.70]		1 2 2 2 3 3
FEMPAC 20	7	45	3	42		2.18	[0.60; 7.88]		
LEVANT I 27	4	49		52		0.85	[0.24; 2.98]	0 0000000	10. 17.17.00
LEVANT II 25	21	278	7	140	-100-	1.51	[0.66; 3.47]	22.1%	
CONSEQUENT ³⁰	2	70	1	65		1.86	[0.17: 20.00]	2.5%	
ILLUMENATE EU 32	13	199	3	59		1.28	[0.38; 4.36	11.0%	9.9%
ISAR-STATH 51	3	48	1	107		6.69	[0.71: 62.66]	1.5%	2.9%
ISAR-PEBIS 55	3	28	0	29		- 7.25	[0.39; 134.09]	1.2%	1.7%
ACOART 1 40	8	96	6	95		1.32	(0.48; 3.66)	14.3%	14.2%
IN.PACT SFA JAPAN 41	4	66	1	29	- <u>+</u> -	1.76	[0.21; 15.05]	3.3%	3.2%
Fixed effect model		1397		919	4	1.84	[1.27; 2.68]	100.0%	s
Random effects model					\$		[1.15; 2.47]		400.000
Heterogeneity: $l^2 = 0\%$, τ^2	= 0, p = 1	0.80			1 1 1	1			
				0	0.1 1 10 1	00			

Causes of Death

	Paclitaxel-Co Balloon (IN.F at 3 Years ¹⁰	ACT SFA)	Paclitaxel-Coated Ster (ZILVER PTX) at 2 Years ^{19,23}		
	Paclitaxel	Control	Paclitaxel	Control	
Cardiovascular	9	0	18	8	
Cancer	2	2]		
Infectious	5	0	1		
Pulmonary	3	0			
Other	3	0	NA	NA	

	Pac	litaxel	C	ontrol					Weight	Weight
Study	Events	Total	Events	Total	Risk	Ratio	RR	95%-CI	(fixed)	(random
THUNDER 57	12	48	8	54	-	mi	- 1.69	[0.75; 3.78]	23.9%	26.9%
ZILVER-PTX 9.19	42	297	12	177			- 2.09	[1.13; 3.85]	47.7%	46.3%
IN.PACT SFA 10,58	24	184	7	103		*	- 1.92	[0.86; 4.30]	28.5%	26.8%
Fixed effect model		529		334		-	1.94	[1.28; 2.96]	100.0%	
Random effects mode	1				157		1.93	[1.27; 2.93]		100.0%
Heterogeneity: $l^2 = 0\%$, τ^2	= 0, p = 0	0.92				1 1				
					0.5	1 2				

Katsanos K, et al. J Am Heart Assoc. 2018;7:e011245


Ptx Safety Concerns Persist

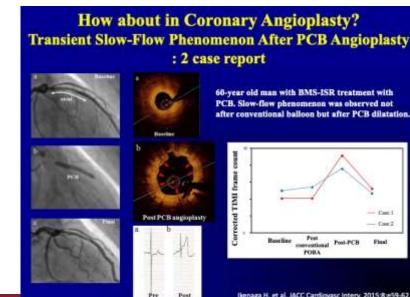
NEWS - INTERVENTIONAL

FDA Says Newer Paclitaxel Data Are 'Comforting' but Limited

Acknowledging the recent, reassuring SWEDEPAD data, the agency says it's not yet ready to update its advice to doctors.

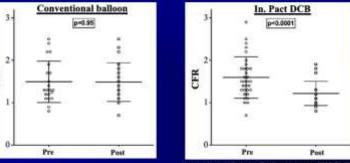
BY L.A. MCKEOWN | JANUARY 12, 2021

Kelsch et al. Invest Radiol. 2011;46:255-263


Diameter		Length						
	20mm	40mm	60mm	80mm	120mm	150mm	200mm	250mm
4	1.1mg	2.0	2.8	3.7	5.5	6.8	9.0	11.2
5	1.5	2.6	3.7	4.8	7.0	8.6	11.4	14.1
6	1.9	3.2	4.5	8.5	4.5	10.4	13.7	17.0
7	2.3	3.8	5.4	6.9	Х	Х	x	х

Total Dose of Ptx Delivered on In.Pact Balloon

Do We Need a Sirolimus DCB?


- •Sirolimus is the standard for coronary artery disease treatment via DES and proven to be safe and effective
- •Ptx modifications (crystalline form) means coating integrity and transfer are variable with substantial portion lost downstream into blood and tissues
- Loss of Ptx into body remains a significant safety concern which was further exacerbated by Katsanos analysis in published in JAHA

PTCA With Drug-Coated Balloons Is Associated with Immediate Decrease of Coronary Flow Reserve (CFR)

32 stable CAD or ACS patients who were treated with conventional balloon and In Pact DCB for ISR or de novo lesion in coronary artery

Young M, et al. Catheter Cardiovasc Interv. 2013;81:682-6

Decreased CFR (dysfunction of microcirculation) suggests the potential adverse effect of DCB in terms of downstream microvascular endothelial function.

Sirolimus offers potential benefits over Paclitaxel

	SIROLIMUS (OR ANALOGS)	PACLITAXEL
Inhibition of SMC proliferation	+ +	+ +
Inhibition of SMC migration	+ +	+
Inhibition of EC proliferation	+ +	+ +
Pro-apoptotic effects	(+)	+ +
Therapeutic range	WIDE	NARROW
Safety margin	10'000 fold	100 fold
Anti-Restenotic impact	+ +	+
Anti-inflammatory properties	+ +	(+)/-
Tissue Absorption	SLOW	FAST
Tissue Retention	SHORT	LONG

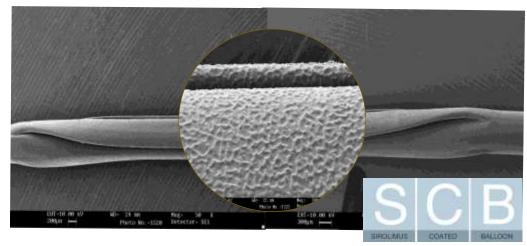
Modified Wessely R, et al. JACC 2006:47(4);708–14.

Sirolimus Coated Balloons – Technical challenges

Enhance tissue absorption

Difficult to get sirolimus to enter into arterial tissue within 30 to 180 seconds of balloon dilatation; hence some kind of "instant glue" is required to transfer the drug from the balloon to the tissue efficiently

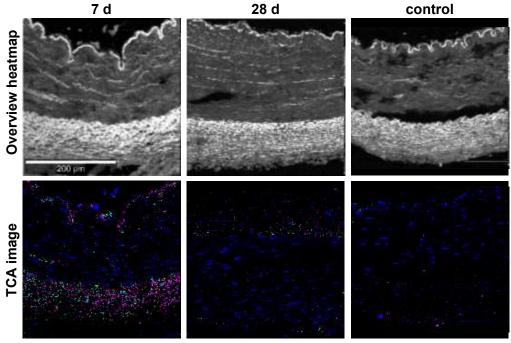
Extend tissue retention

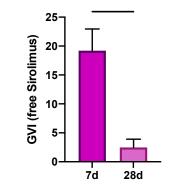

 Sirolimus must be continuously delivered over time, so some form of "time release mechanism" must be employed to maintain therapeutic levels

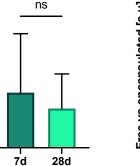
MAGIC TOUCH – Sirolimus Coated Balloon

- MAGICTOUCH[®] SCB is Sirolimus Coated Balloon to treat coronary artery disease
- Delivers drug in 60 seconds
- Sub-micron phospholipid particles

Nothing Leaves Behind

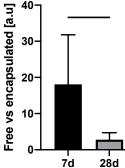



Raman imaging – free vs encapsulated sirolimus


Preliminary results

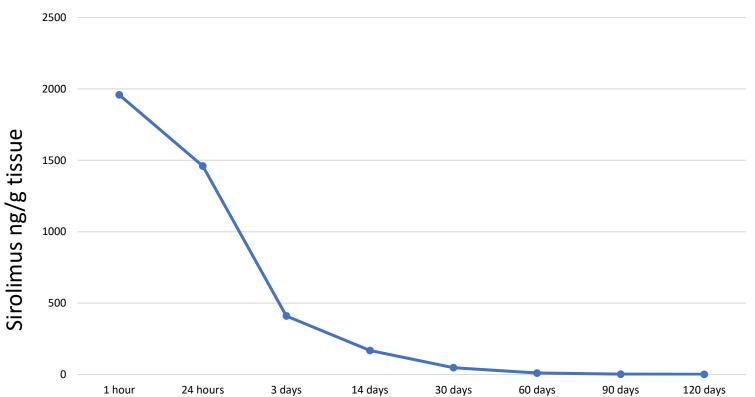
- Raman maps were evaluated by TCA with the reference components for sirolimus and the nanocarrier-encapsulated drug
- (2) Mean GVI were determined for Raman images of free and encapsulated sirolimus

nuclei / sirolimus / nanocarrier



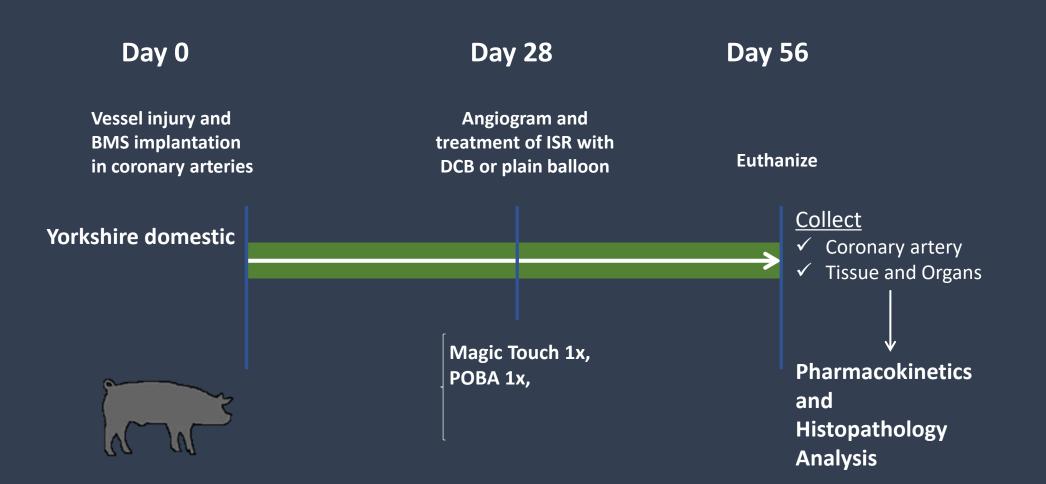
GVI (encapsulated Sirolimus)

3-


2-

TCA: true component analysis GVI: gray value intensity

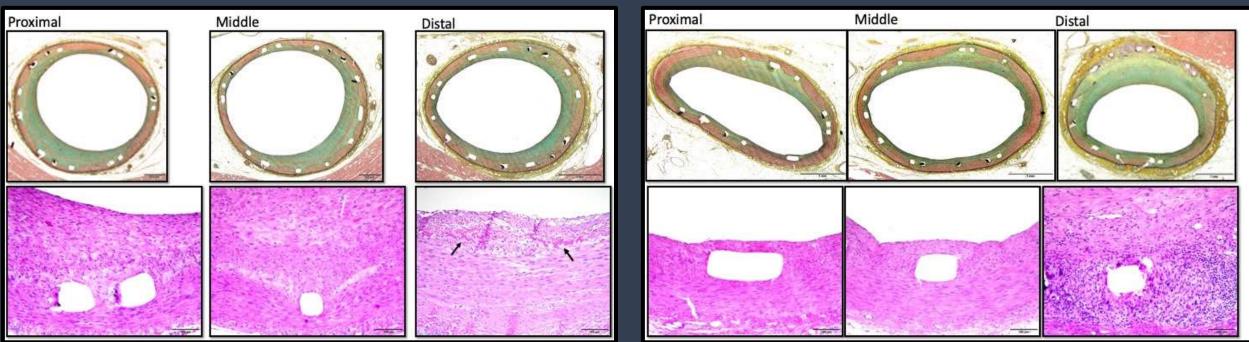
1



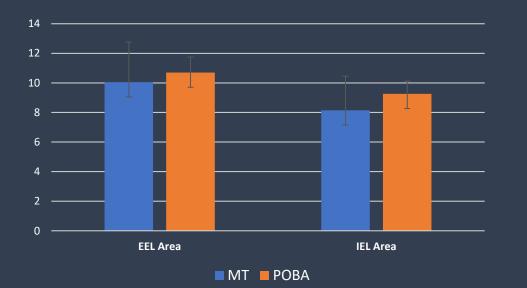
Arterial Wall Sirolimus (ng/g tissue) after MagicTouch

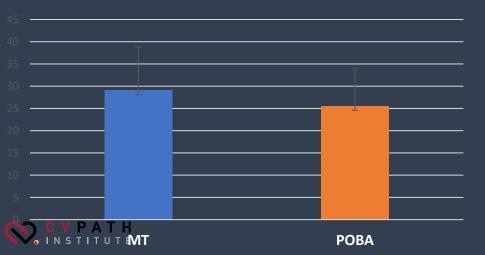
1 h	our	24 hours	3 days	14 days	30 days	60 days	90 days	120 days
	1451.3	1301.2	309	108	60.5	BLQ	BLQ	BLQ
	1541.3	1586.4	432.9	194	114	11.63	6.88	3.99
	3147.3	1013.7	632.2	193.7	26.7	12.54	BLQ	BLQ
	1791.7	1255.4	327.3	76.4	56.6	14.33	BLQ	BLQ
	2210.7	1158.5	406.6	293.1	18.3	13.1	BLQ	BLQ
	1613.9	2444.4	351.7	143.4	10.2	10.21	6.94	4.43
								BLQ

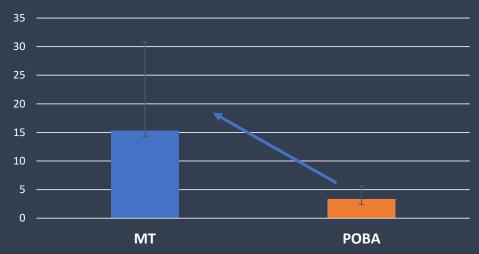
Pre-clinical study ; swine coronary ISR lesion



28 Day Histology


MagicTouch


28 Day ISR Histology MagicTouch


4.5 4 3.5 3 2.5 2 1.5 1 0 MT POBA

Neointimal Area

%Stenosis

Downstream Findings

- Total of 84 sections of myocardium were examined
- No incidence of myocardial infarction in either group
- Microscopic scarring observed in 2 downstream myocardium sections from MagicTouch and 3 sections from POBA treated areas
 - ALTHOUGH THERE WAS <u>NO DIRECT VISUAL EVIDENCE</u> OF DOWNSTREAM EMBOLI

Magic Touch-FASICO registry

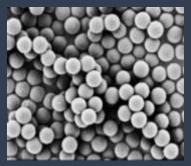
-all-comer registry of the first consecutive SCB patients (April-September 2016) at the first European centre that had the device available -at least 6 months of follow up -we investigated the immediate <u>technical</u> and short-term <u>clinical</u>

performance of this device.

n=32, lesions=34	
Age, mean [SD]	68.56 [±9,45]
Male gender, %	11
Diabete mellitus, %	38
ACS, %	32
ISR, %	47
ISR and failure of PCB	31
Moderate/severe calcifications	32
Multivessel disease	50

Angiographic success, % Procedural success, %	100 100
Tnl peak after PCI, average value, µg/l (SD)	40 (21.6)
Hybrid approach SCB + stent on another vessel (same procedure), n (%)	5 (14.7)
Hybrid approach SCB $+$ DES on the same vessel, n (%)	9 (26.5)
Minimal lumen diameter post, mean, mm (SD)	2.20 (0.44
Minimal lumen diameter pre, mean, mm (SD)	0.39 (0.08
Inflation pressure, mean, atm. (SD)	11.6 (4.73
Inflation time, mean, sec (SD)	50 (16.7)
SCB diameter, mean, mm (SD)	2.6 (0.52)
SCB length, mean, mm (SD)	21.02 (4.7

Clinical follow up (average: 6.9 \pm 1.7 months).		
DAPT ongoing, n [%]	10 [31.6]	
All-cause death, n [%]	0	
Cardiac death, n [%]	0	
Target lesion revascularization, n [%]	3 [9.4]	
MI, n [%]	0	
MACE, n [%]	3 [9.4]	


B Cortese, CV Revasc Med '17

Sirolimus DEB with SELUTION: MedAlliance

 Micro-reservoirs made out of biodegradable polymer intermixed with Sirolimus:

Controlled and sustained drug release mechanism Maintains therapeutic effect in tissue over long period of time

• Novel Cell Adherent Technology – CAT:

CAT transfer membrane houses and protects micro-reservoirs during balloon insertion, lesion crossing and expansion.

CAT transfer membrane with embedded micro-reservoirs releases from balloon delivery system and adheres to vessel lumen with short balloon Inflation.

Preclinical Study (Porcine Coronary Model)

Aspirin 81 mg/day, Clopidogrel 75mg /day

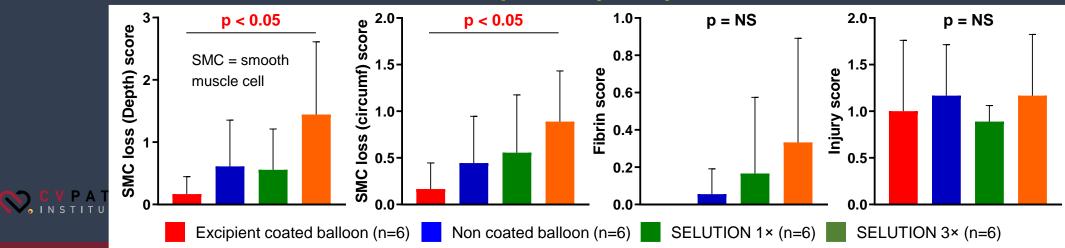
Balloon (3.0 or 3.5 × 15 mm)

- 1. Excipient coated balloon : n=6
- 2. Non coated balloon : n=6
- 3. SELUTION 1× dose : n=6
- 4. SELUTION 3× dose : n=6

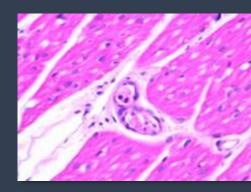
Assessment of myocardium

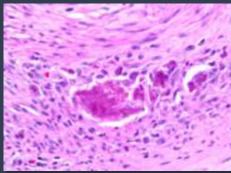
- Anterior, lateral, posterior, septal wall and right ventricle at similar level, and surrounded treated vessels area were sampled.
- 2. Ischemia area, Inflammation, foreign material and Thtomboembolus were examined

30 Day Representative Histological Images

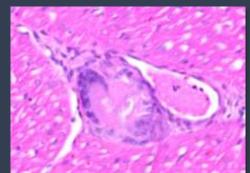

Excipient coated balloon

Non coated balloon

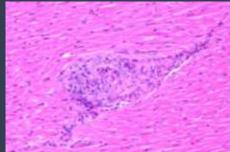

SELUTION 1×


Morphometry analysis

30 Day Downstream Findings in Porcine Myocardium

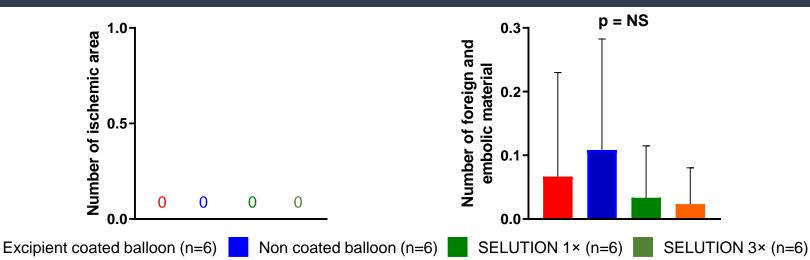


Excipient balloon Adjacent small arterioles show embolic amorphous material.



SELUTION 1×

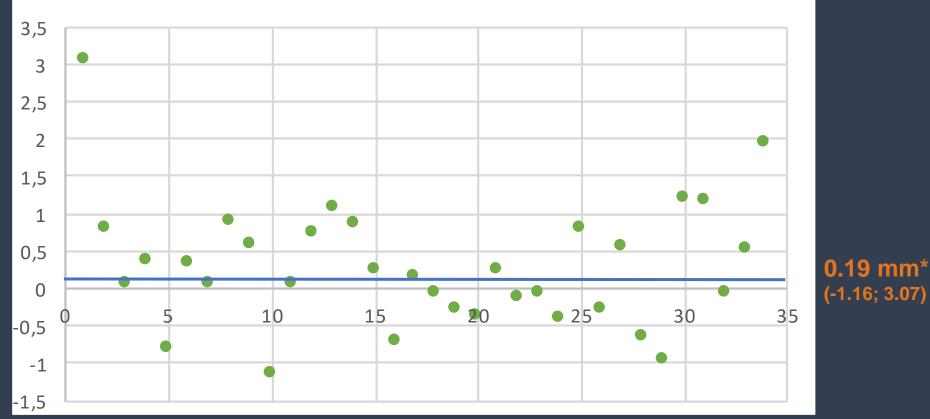
Epicardial coronary artery shows early calcified fibrin surrounding inflammatory reaction.



Non coated balloon Adjacent arterioles show amorphous foreign material with inflammatory reaction.

SELUTION 3×

Giant cells surrounding a minute birefringent foreign material.


Peripheral FIH – SELUTIONSFAClinicalTrials.gov ID: NCT02941224

-	OBJECTIVES	To assess the safety and efficacy of the SELUTION DCB in treatment of de-novo occluded/stenotic or re-occluded/restenotic lesions of SFA and/or PA, assessed at multiple time points clinical, angiographic and/or ultrasound assessment
Ŷ	PRINCIPLE INVESTIGATOR	Thomas Zeller, Bad Krozingen, Germany
	DESIGN	 Prospective, controlled, multi-center, open, single-arm clinical investigation 50 patients 4 centers in Germany
X	PRIMARY ENDPOINTS	Angiographic Late Lumen Loss (LLL) by QVA – 6 months
	SECONDARY ENDPOINTS	 Major adverse Events (Death, Thrombosis, Amputation, CD-TLR) 6 months Primary Patency – Freedom from CD-TLR and absence of Restenosis by DUS - 6, 12 and 24 months Angiographic Binary Restenosis (ABR) by QVA - 6 months Composite of Freedom from Amputation and Freedom from CD-TVR – 12 and 24 months Change of ABI, WIQ and Qol - 6, 12 and 24 months

CVPATH

SELUTION PRIMARY ENDPOINT

LLL at 6 months (LLL N=34)

SELUTION Results in Context

• Results from different trials are not directly comparable. Information provided for educational purposes.

Trial	RANGER SFA	PACIFIER	Tepe et al	LEVANT I	FemPac	BIOLUX-PI	ILLUMENATE	SELUTION
Therapy	Ranger	IN.PACT Pacific	DCB not specified	Lutonix	Ptx coated	Passeo-18 Lux	Stellarex	SELUTION
Mean Lesion Length (mm)	6.8	7.0	5.7	8.1	5.7	6.1	7.2	6.4
Bailout Stenting (%)	21%	21%	11%	3%	9%	N/A	5%	8%

Conclusion / Take-home Message

- •DCB are a newer technology which are here to stay and paclitaxel coated DCBs have demonstrated efficacy in a number of important clinical indications (ISR, Above the Knee De Novo Disease, AVF/AVG)
- Concerns regarding the safety of paclitaxel DCBs remain although these have been somewhat allayed by the SWEDEPAD data

• PTX WITH NARROW THERAPEUTIC INDEX

• SIGNIFICANT LOSS OF PTX INTO BODY AND DOWNSTREAM EMBOLI

- Sirolimus DCBs are emerging as a formidable competitor to both DES (both for De Novo Disease and for ISR) but larger more convincing trials are needed
- Because sirolimus DCBs require carriers (for the most part), it is important to evaluate safety of these devices at later timepoints when sirolimus levels in tissues have declined
- Several new randomized trials of sirolimus DCBs are expected to launch this year

